양자키분배 편집하기

이동: 둘러보기, 검색

경고: 로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다. 로그인하거나 계정을 생성하면 편집자가 아이디(ID)으로 기록되고, 다른 장점도 있습니다.

편집을 되돌릴 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 저장해주세요.
최신판 당신의 편집
246번째 줄: 246번째 줄:
 
== 기술 ==
 
== 기술 ==
 
=== 양자광원 ===
 
=== 양자광원 ===
* '''단일광자 상태'''  
+
* '''단일광자 상태''  
 
:BB84 프로토콜을 포함한 많은 양자암호 프로토콜들은 단일광자 상태를 사용하는 방식이다. 이상적인 단일광자 상태는 정해진 하나의 모드에 광자 하나만이 존재하는 상태를 말하는데, 이러한 단일광자 상태는 두 가지 에너지 준위만을 가진 고립된 원자 한 개를 들뜨게 했을 때 원자에서 방출되는 형광에서 얻을 수 있다. 따라서 만약 광자 검출기의 측정분해 시간보다 짧은 시간 간격 동안 원자를 들뜨게 하지 않는다면 두 번째 광자가 원자에서 방출될 확률은 없어서 광자 검출기는 한 번에 광자 한 개만 측정한다. 실제 단일광자 상태는 가변도가 평균값보다 작다. 따라서 측정된 광자 수 분포가 상대적으로 좁아서 아포아송(sub-Poisson) 분포를 보인다. 빔 분할기와 두 개의 광자 검출기를 이용해서 광자 두 개를 동시에 측정하는 상관관계 측정에서는 광자 흩어짐 효과가 나타난다. 실험으로 구현된 단일광자 광원들은 1) 단일분자를 제한적으로 들뜨게 하는 방법, 2) 다이아몬드 결정구조에 질소 원자 한 개를 치환하여 들뜨게 하는 방법, 3) 반도체 양자 우물 구조를 이용하는 방법, 4) 반도체 양자점을 이용한 방법, 5) 광학적인 매개 하향변환 과정에서 동시에 발생하는 광자 쌍 중 광자 하나를 측정했을 때 다른 광자가 단일 광자 상태에 존재하는 현상을 이용하는 조건부 단일광자 광원 등이 있다.  
 
:BB84 프로토콜을 포함한 많은 양자암호 프로토콜들은 단일광자 상태를 사용하는 방식이다. 이상적인 단일광자 상태는 정해진 하나의 모드에 광자 하나만이 존재하는 상태를 말하는데, 이러한 단일광자 상태는 두 가지 에너지 준위만을 가진 고립된 원자 한 개를 들뜨게 했을 때 원자에서 방출되는 형광에서 얻을 수 있다. 따라서 만약 광자 검출기의 측정분해 시간보다 짧은 시간 간격 동안 원자를 들뜨게 하지 않는다면 두 번째 광자가 원자에서 방출될 확률은 없어서 광자 검출기는 한 번에 광자 한 개만 측정한다. 실제 단일광자 상태는 가변도가 평균값보다 작다. 따라서 측정된 광자 수 분포가 상대적으로 좁아서 아포아송(sub-Poisson) 분포를 보인다. 빔 분할기와 두 개의 광자 검출기를 이용해서 광자 두 개를 동시에 측정하는 상관관계 측정에서는 광자 흩어짐 효과가 나타난다. 실험으로 구현된 단일광자 광원들은 1) 단일분자를 제한적으로 들뜨게 하는 방법, 2) 다이아몬드 결정구조에 질소 원자 한 개를 치환하여 들뜨게 하는 방법, 3) 반도체 양자 우물 구조를 이용하는 방법, 4) 반도체 양자점을 이용한 방법, 5) 광학적인 매개 하향변환 과정에서 동시에 발생하는 광자 쌍 중 광자 하나를 측정했을 때 다른 광자가 단일 광자 상태에 존재하는 현상을 이용하는 조건부 단일광자 광원 등이 있다.  
  
254번째 줄: 254번째 줄:
 
:양자 얽힘 상태를 광원으로 이용하기 위해 연구되었다. 얽힘 상태는 양자역학의 가장 근본적인 특성 중 하나로, 둘 이상의 입자들이 서로 특별한 중첩된 상태에 위치하여 그 전체 상태가 개별적인 입자들의 파동함수의 곱으로 기술할 수 없는 양자 상태를 의미한다. 두 입자 얽힘 상태의 대표적인 예시는 스핀이 1/2인 한 쌍의 전자 사이에 존재하는 스핀의 비대칭 상관관계와 두 전자의 스핀상태의 중첩이다. 공간적으로 서로 멀리 떨어져 있는 두 입자는 ↑상태와 ↓상태가 서로 중첩되어 있으며, 한 입자의 스핀을 측정하여 특정한 방향으로 결정됐다면 그와 동시에 다른 입자의 스핀은 자동으로 반대 방향으로 결정된다. 이러한 양자 얽힘 상태를 생성하기 위해 1980년대 중반까지는 주로 원자의 다단천이 현상이 이용되었다. 하지만 1980년대 후반부터는 자발적인 매개 하향변환 과정에서 발생하는 광자 쌍을 이용하여 얽힘 상태를 만드는 방법이 가장 보편적인 방법이 되었다.  
 
:양자 얽힘 상태를 광원으로 이용하기 위해 연구되었다. 얽힘 상태는 양자역학의 가장 근본적인 특성 중 하나로, 둘 이상의 입자들이 서로 특별한 중첩된 상태에 위치하여 그 전체 상태가 개별적인 입자들의 파동함수의 곱으로 기술할 수 없는 양자 상태를 의미한다. 두 입자 얽힘 상태의 대표적인 예시는 스핀이 1/2인 한 쌍의 전자 사이에 존재하는 스핀의 비대칭 상관관계와 두 전자의 스핀상태의 중첩이다. 공간적으로 서로 멀리 떨어져 있는 두 입자는 ↑상태와 ↓상태가 서로 중첩되어 있으며, 한 입자의 스핀을 측정하여 특정한 방향으로 결정됐다면 그와 동시에 다른 입자의 스핀은 자동으로 반대 방향으로 결정된다. 이러한 양자 얽힘 상태를 생성하기 위해 1980년대 중반까지는 주로 원자의 다단천이 현상이 이용되었다. 하지만 1980년대 후반부터는 자발적인 매개 하향변환 과정에서 발생하는 광자 쌍을 이용하여 얽힘 상태를 만드는 방법이 가장 보편적인 방법이 되었다.  
  
:매개 하향변환과정은 높은 진동수 또는 짧은 파장의 레이저 광을 비선형 계수를 갖는 매질에 입사시킬 때 입사하는 광자의 일부가 상대적으로 낮은 진동수를 갖는 광자 한 상으로 변환되는 과정을 의미한다. 매질에 입사하는 빛은 보통 펌프광, 상호작용에 의해 발생하는 두 광자를 하나는 시그널(signal) 광자, 하나는 아이들러(idler)  광자라고 부른다. 매개 하향변환은 비선형 매질 안에서 펌프 광자와 하향 변환된 광자 간의 에너지 보존법칙과 운동량 보존법칙을 만족할 때 효과적이다. 매개 하향변환의 광자 두 개의 편광이 동일한 상태에 있는 제1 형과 광자 두 개의 편광이 서로 직교하는 제2 형이 있다. 광자 쌍 발생방식과 간섭계를 구성하는 방법에 따라 얼마든지 다양한 형태의 양자 얽힘 상태를 구현할 수 있다.
+
매개 하향변환과정은 높은 진동수 또는 짧은 파장의 레이저 광을 비선형 계수를 갖는 매질에 입사시킬 때 입사하는 광자의 일부가 상대적으로 낮은 진동수를 갖는 광자 한 상으로 변환되는 과정을 의미한다. 매질에 입사하는 빛은 보통 펌프광, 상호작용에 의해 발생하는 두 광자를 하나는 시그널(signal) 광자, 하나는 아이들러(idler)  광자라고 부른다. 매개 하향변환은 비선형 매질 안에서 펌프 광자와 하향 변환된 광자 간의 에너지 보존법칙과 운동량 보존법칙을 만족할 때 효과적이다. 매개 하향변환의 광자 두 개의 편광이 동일한 상태에 있는 제1 형과 광자 두 개의 편광이 서로 직교하는 제2 형이 있다. 광자 쌍 발생방식과 간섭계를 구성하는 방법에 따라 얼마든지 다양한 형태의 양자 얽힘 상태를 구현할 수 있다.
  
 
=== 광자 검출기 ===
 
=== 광자 검출기 ===

해시넷에서의 모든 기여는 다른 기여자가 편집, 수정, 삭제할 수 있다는 점을 유의해 주세요. 만약 여기에 동의하지 않는다면, 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다 (자세한 사항은 해시넷:저작권 문서를 보세요). 저작권이 있는 내용을 허가 없이 저장하지 마세요!

취소 | 편집 도움말 (새 창에서 열림)