검수요청.png검수요청.png

"유전 알고리즘"의 두 판 사이의 차이

해시넷
이동: 둘러보기, 검색
1번째 줄: 1번째 줄:
'''유전 알고리즘'''은 자연세계의 진화과정에 기초한 계산 모델로서 [[존 홀랜드]](John Holland)에 의해서 1975년에 개발된 전역 최적화 기법으로, 최적화 문제를 해결하는 기법의 하나이다. 생물의 진화를 모방한 진화 연산의 대표적인 기법으로, 실제 진화의 과정에서 많은 부분을 차용하였으며, 변이, 교배 연산 등이 존재한다. 또한 세대, 인구 등의 용어도 문제 풀이 과정에서 사용된다.<ref name="위키"> 유전 알고리즘 위키백과 - https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%A0%84_%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98 </ref>
+
'''유전 알고리즘'''(Genetic Algorithm)자연 세계의 진화 과정에 기초한 계산 모델로서 [[존 홀랜드]](John Holland)에 의해서 1975년에 개발된 전역 최적화 기법으로, 최적화 문제를 해결하는 기법의 하나이다. 생물의 진화를 모방한 진화 연산의 대표적인 기법으로, 실제 진화의 과정에서 많은 부분을 차용하였으며, 변이, 교배 연산 등이 존재한다. 또한 세대, 인구 등의 용어도 문제 풀이 과정에서 사용된다.<ref name="위키"> 유전 알고리즘 위키백과 - https://ko.wikipedia.org/wiki/%EC%9C%A0%EC%A0%84_%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98 </ref>
  
 
== 개요 ==
 
== 개요 ==
유전 알고리즘은 자연계의 생물 유전학에 기본 이론을 두며, 병렬적이고 전역적인 탐색 알고리즘으로서, 다윈의 적자생존 이론을 기본 개념으로 한다. 유전 알고리즘은 풀고자 하는 문제에 대한 가능한 해들을 정해진 형태의 자료구조로 표현한 다음, 이들을 점차적으로 변형함으로써 점점 더 좋은 해들을 만들어 낸다. 여기에서 해들을 나타내는 자료구조는 유전자, 이들을 변형함으로써 점점 더 좋은 해를 만들어 내는 과정은 진화로 표현할 수 있다. 달리 표현하면, 유전 알고리즘은 어떤 미지의 함수 Y = f(x)를 최적화하는 해 x를 찾기 위해, 진화를 모방한(Simulated evolution) 탐색 알고리즘이라고 말할 수 있다. 유전 알고리즘은 특정한 문제를 풀기 위한 알고리즘이라기 보다는 문제를 풀기 위한 접근방법에 가까우며, 유전 알고리즘에서 사용할 수 있는 형식으로 바꾸어 표현할 수 있는 모든 문제에 대해서 적용할 수 있다. 일반적으로 문제가 계산 불가능할 정도로 지나치게 복잡할 경우 유전 알고리즘을 통하여, 실제 최적해를 구하지는 못하더라도 최적해에 가까운 답을 얻기 위한 방안으로써 접근할 수 있다. 이 경우 해당 문제를 푸는 데 최적화되어 있는 알고리즘보다 좋은 성능을 보여주지는 못하지만, 대부분 받아들일 수 있는 수준의 해를 보여줄 수 있다. 이러한 생물의 진화 과정, 즉 자연 선택과 유전 법칙 등을 모방한 알고리즘들로 진화 전략(Evolutionary strategies), 유전 프로그래밍(Genetic programming) 등 여러 형태의 이론과 기법들이 최근에 활발히 연구되고 있다. 유전 알고리즘은 이 중에서 가장 기본이 되고 대표적인 알고리즘으로, 자연과학/공학 및 인문 사회 과학 분야에서 비선형 또는 계산 불가능한 복잡한 문제를 해결하는 데 널리 응용되고 있다.<ref name="위키"></ref>  
+
유전 알고리즘은 자연계의 생물 유전학에 기본 이론을 병렬적이고 전역적인 탐색 알고리즘으로서, 다윈의 적자생존 이론을 기본 개념으로 한다. 유전 알고리즘은 풀고자 하는 문제에 대한 가능한 해들을 정해진 형태의 자료구조로 표현한 다음, 이들을 점차적으로 변형함으로써 점점 더 좋은 해들을 만들어 낸다. 여기에서 해들을 나타내는 자료구조는 유전자, 이들을 변형함으로써 점점 더 좋은 해를 만들어 내는 과정은 진화로 표현할 수 있다. 달리 표현하면, 유전 알고리즘은 어떤 미지의 함수 <math>Y </math>= <math>f(x)</math>를 최적화하는 해 <math>x</math>를 찾기 위해, 진화를 모방한(Simulated evolution) 탐색 알고리즘이라고 말할 수 있다. 유전 알고리즘은 특정한 문제를 풀기 위한 알고리즘이라기 보다는 문제를 풀기 위한 접근방법에 가까우며, 유전 알고리즘에서 사용할 수 있는 형식으로 바꾸어 표현할 수 있는 모든 문제에 대해서 적용할 수 있다. 일반적으로 문제가 계산 불가능할 정도로 지나치게 복잡할 경우 유전 알고리즘을 통하여, 실제 최적해를 구하지는 못하더라도 최적해에 가까운 답을 얻기 위한 방안으로써 접근할 수 있다. 이 경우 해당 문제를 푸는 데 최적화되어 있는 알고리즘보다 좋은 성능을 보여주지는 못하지만, 대부분 받아들일 수 있는 수준의 해를 보여줄 수 있다. 이러한 생물의 진화 과정, 즉 자연 선택과 유전 법칙 등을 모방한 알고리즘들로 진화 전략(Evolutionary strategies), 유전 프로그래밍(Genetic programming) 등 여러 형태의 이론과 기법들이 최근에 활발히 연구되고 있다. 유전 알고리즘은 이 중에서 가장 기본이 되고 대표적인 알고리즘으로, 자연과학/공학 및 인문 사회 과학 분야에서 비선형 또는 계산 불가능한 복잡한 문제를 해결하는 데 널리 응용되고 있다.<ref name="위키"></ref>
 +
 
 +
== 구성 ==
 +
;요구 조건
 +
유전 알고리즘을 어떤 문제에 적용하기 위해서는 해를 유전자의 형식으로 표현할 수 있어야 하며, 이 해가 얼마나 적합한지를 적합도 함수를 통해 계산할 수 있어야 한다. 일반 생명체의 특성이 유전체의 집합인 유전자로 나타나는 것과 같이, 유전 알고리즘에서는 해의 특성을 숫자의 배열이나 문자열과 같은 자료 구조를 통해서 표시하게 된다. 적합도 함수는 이렇게 나타내어진 해가 얼마나 문제의 답으로 적합한지를 평가하기 위한 함수이다. 이는 실세계의 생명체가 유전적 특성에 따라 환경에 얼마나 잘 적응할 수 있는지가 결정되는 것과 비교할 수 있다.
 +
 
 +
;흐름
 +
어떤 문제에 대해 유전자 형식이 정의되었다면, 어떤 해들의 유전자들을 서로 조합함으로써 기존의 해로부터 새로운 해를 만들어낼 수 있다. 이런 조합 연산은 교배(Crossover)에 비유할 수 있다. 우수한 해들을 선택하여 이들을 교배하면, 만들어진 해는 우수한 해들이 가지는 특성을 물려받을 가능성이 높게 된다. 우수한 해의 선택에는 앞에서 정의한 적합도 함수를 이용할 수 있으며, 적합도가 높은 해가 선택될 확률을 높게 만들면, 보다 나은 유전자를 가진 해가 다음 세대에 자신의 유전자를 넘겨줄 확률이 높게 되고, 따라서 다음 세대의 해들은 최적해에 점차 가까워지게 된다. 또 비록 교배를 통해 후손을 남기지 못하더라도, 변이를 통해 새로운 유전자를 형성하여 다음 세대로 넘겨 주도록 할 수 있으며, 이는 지역 최적점에 빠지지 않도록 하는 주요한 기법이다. 해들을 교배하기 위해서는 아담과 하와처럼 초기 해의 집단이 필요하다. 초기 해 집단은 단지 이후의 해를 구하는 데 있어 필요한 초기 개체로서의 역할만을 위한 것이므로, 우수한 해들로 이루어질 필요는 없다. 일반적으로는 유전자를 랜덤하게 생성하여 초기 해 집단을 구성한다. 초기 해 집단이 구성되면, 이들 내부의 해의 교배를 통해 다음 세대의 해의 집합을 생성하게 되며, 이를 세대를 거듭하면서 반복해 가면, 해들은 점점 정답에 가까워지게 된다. 유전 알고리즘이 전역 최적해를 구하려면, 많은 인구를 유지하면서 많은 세대를 내려갈 필요가 있다. 따라서, 대부분의 경우는 세대가 일정 수준 진행되었거나, 해가 특정 범위에 들게되면 알고리즘을 종료하게 된다.<ref name="위키"></ref>  
  
 
{{각주}}
 
{{각주}}

2020년 7월 28일 (화) 09:50 판

유전 알고리즘(Genetic Algorithm)은 자연 세계의 진화 과정에 기초한 계산 모델로서 존 홀랜드(John Holland)에 의해서 1975년에 개발된 전역 최적화 기법으로, 최적화 문제를 해결하는 기법의 하나이다. 생물의 진화를 모방한 진화 연산의 대표적인 기법으로, 실제 진화의 과정에서 많은 부분을 차용하였으며, 변이, 교배 연산 등이 존재한다. 또한 세대, 인구 등의 용어도 문제 풀이 과정에서 사용된다.[1]

개요

유전 알고리즘은 자연계의 생물 유전학에 기본 이론을 둔 병렬적이고 전역적인 탐색 알고리즘으로서, 다윈의 적자생존 이론을 기본 개념으로 한다. 유전 알고리즘은 풀고자 하는 문제에 대한 가능한 해들을 정해진 형태의 자료구조로 표현한 다음, 이들을 점차적으로 변형함으로써 점점 더 좋은 해들을 만들어 낸다. 여기에서 해들을 나타내는 자료구조는 유전자, 이들을 변형함으로써 점점 더 좋은 해를 만들어 내는 과정은 진화로 표현할 수 있다. 달리 표현하면, 유전 알고리즘은 어떤 미지의 함수 = 를 최적화하는 해 를 찾기 위해, 진화를 모방한(Simulated evolution) 탐색 알고리즘이라고 말할 수 있다. 유전 알고리즘은 특정한 문제를 풀기 위한 알고리즘이라기 보다는 문제를 풀기 위한 접근방법에 가까우며, 유전 알고리즘에서 사용할 수 있는 형식으로 바꾸어 표현할 수 있는 모든 문제에 대해서 적용할 수 있다. 일반적으로 문제가 계산 불가능할 정도로 지나치게 복잡할 경우 유전 알고리즘을 통하여, 실제 최적해를 구하지는 못하더라도 최적해에 가까운 답을 얻기 위한 방안으로써 접근할 수 있다. 이 경우 해당 문제를 푸는 데 최적화되어 있는 알고리즘보다 좋은 성능을 보여주지는 못하지만, 대부분 받아들일 수 있는 수준의 해를 보여줄 수 있다. 이러한 생물의 진화 과정, 즉 자연 선택과 유전 법칙 등을 모방한 알고리즘들로 진화 전략(Evolutionary strategies), 유전 프로그래밍(Genetic programming) 등 여러 형태의 이론과 기법들이 최근에 활발히 연구되고 있다. 유전 알고리즘은 이 중에서 가장 기본이 되고 대표적인 알고리즘으로, 자연과학/공학 및 인문 사회 과학 분야에서 비선형 또는 계산 불가능한 복잡한 문제를 해결하는 데 널리 응용되고 있다.[1]

구성

요구 조건

유전 알고리즘을 어떤 문제에 적용하기 위해서는 해를 유전자의 형식으로 표현할 수 있어야 하며, 이 해가 얼마나 적합한지를 적합도 함수를 통해 계산할 수 있어야 한다. 일반 생명체의 특성이 유전체의 집합인 유전자로 나타나는 것과 같이, 유전 알고리즘에서는 해의 특성을 숫자의 배열이나 문자열과 같은 자료 구조를 통해서 표시하게 된다. 적합도 함수는 이렇게 나타내어진 해가 얼마나 문제의 답으로 적합한지를 평가하기 위한 함수이다. 이는 실세계의 생명체가 유전적 특성에 따라 환경에 얼마나 잘 적응할 수 있는지가 결정되는 것과 비교할 수 있다.

흐름

어떤 문제에 대해 유전자 형식이 정의되었다면, 어떤 해들의 유전자들을 서로 조합함으로써 기존의 해로부터 새로운 해를 만들어낼 수 있다. 이런 조합 연산은 교배(Crossover)에 비유할 수 있다. 우수한 해들을 선택하여 이들을 교배하면, 만들어진 해는 우수한 해들이 가지는 특성을 물려받을 가능성이 높게 된다. 우수한 해의 선택에는 앞에서 정의한 적합도 함수를 이용할 수 있으며, 적합도가 높은 해가 선택될 확률을 높게 만들면, 보다 나은 유전자를 가진 해가 다음 세대에 자신의 유전자를 넘겨줄 확률이 높게 되고, 따라서 다음 세대의 해들은 최적해에 점차 가까워지게 된다. 또 비록 교배를 통해 후손을 남기지 못하더라도, 변이를 통해 새로운 유전자를 형성하여 다음 세대로 넘겨 주도록 할 수 있으며, 이는 지역 최적점에 빠지지 않도록 하는 주요한 기법이다. 해들을 교배하기 위해서는 아담과 하와처럼 초기 해의 집단이 필요하다. 초기 해 집단은 단지 이후의 해를 구하는 데 있어 필요한 초기 개체로서의 역할만을 위한 것이므로, 우수한 해들로 이루어질 필요는 없다. 일반적으로는 유전자를 랜덤하게 생성하여 초기 해 집단을 구성한다. 초기 해 집단이 구성되면, 이들 내부의 해의 교배를 통해 다음 세대의 해의 집합을 생성하게 되며, 이를 세대를 거듭하면서 반복해 가면, 해들은 점점 정답에 가까워지게 된다. 유전 알고리즘이 전역 최적해를 구하려면, 많은 인구를 유지하면서 많은 세대를 내려갈 필요가 있다. 따라서, 대부분의 경우는 세대가 일정 수준 진행되었거나, 해가 특정 범위에 들게되면 알고리즘을 종료하게 된다.[1]

각주

참고자료

같이 보기


  검수요청.png검수요청.png 이 유전 알고리즘 문서는 알고리즘에 관한 글로서 검토가 필요합니다. 위키 문서는 누구든지 자유롭게 편집할 수 있습니다. [편집]을 눌러 문서 내용을 검토·수정해 주세요.